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STABILITY OF PERIODIC OSCILLATIONS IN SYSTEMS WITH 
MILD AND STRICT NONLINEARITY* 

A. A. ZEVIN 

Nonautonomous weakly dissipative systems with one degree of freedom and mild and 

strict nonlinearity are considered without constraints on the degree of nonlinearity 
and magnitude of perturbing effects. A new method is proposed for the investigation 

of stability of periodic oscillations. It is based on estimates of the spacing of 

zeros of solutions of the variational equation. Conditions of stability and instab- 

ility of fundamental periodic oscillations, determined by the form of perturbing 

effects and the character of nonlinearity, are estiablished. Theorems on the 

number of investigated periodic solutions and their amplitude-frequency character- 

istics are proved. 

The majority of investigations of stability of periodic osillations was carried out by 

asymptotic methods or the method of small parameter, and related to quasilinear and quasi- 

Liapunov systems (see /l-33/). Some sufficient conditions of asymptotic stability as a 

whole were obtained using the Liapunov functions with very strict constraints on the degree 

of nonlinearity /4/. These and other known data cannot be used when the nonlinear and non- 

autonomous terms are fairly large. Some systems of this type were investigated by approxi- 

mate analytic methods and by simulation /5,6/. Rigorous solutions are obtained in the present 

paper for a wide class of systems, without constraints on the magnitude of nonlinear and 

nonautonomous terms. 

1. The nonautonomous nonlinear system 

t" + I_Lcp (5, C', mt) + f (z) = P (4, CL > 0, f (4 = - f (-X), f (5)x > 0 for 1 x 1 -< c < 00 (1.1) 

'p(x,s',z)=cp(~,z',z+2n), p(ot)=~pkCOSkot, k=l,3,5,... 

with one degree of freedom is considered on the ass&nption that f(s) and m(s, x', wt) are dif- 

ferentiable with respect to their arguments and that 

T 

s cp~(x(t),x’(t),ot)dt>o, T=+ 
(I 

(1.2) 

where r(t) is any function of the form 

r(t)=~xh_COSkOt, h-=1,3,5,... (1.3) 
h- 

The term p'p (5, s', tit) defines dissipative forces whose smallness is taken into considera- 

tion by parameter p. Note that in dissipative systems, as a rule, mz (5, x', wt) > 0; i.e. 

condition (1.2) is satisfied. 

It is assumed that when s>O ,f(z) is convex (strict nonlinearity) or concave (mild non- 

linearity). In the latter 

Let x(t)be a periodic 

We consider the respective 

If its multipliers are not 
r(t, p) of Eq. (1.1) which 

tion is of the form 

case f(x) may change its sign at some 

solution of Eq. (1.1) when p = 0. 

s" + f 14 = p (wt) 

x=c. 

(1.4) 

variational equation 

Y" + a (t)Y = 0, a (t) = f% (5 (4) 
unity, there exists for fairly small 

reduces to x(t)when p = 0 /3/. The 

(1.5) 

p a unique periodic solution 

respective variational equa- 

Y" + b (t, p) Y' + a (t, p) Y = 0 (1.6) 

For small k we have z (t, p) z x (t), a (t, p) =: a (t), and b (t, p) = 0. If the multipliers of Eq. (1.5) 

are real and not 1 or -1, the solution x(t) is unstable. The corresponding solution r (t, CL) 
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is obviously also unstable when P is small. If the multipliers are complex, then with condi- 

tion (1.2) satisfied and a small p the multipliers of Eq. (1.6) lie within the unit circle 

/3/. Because of this, the stability of the trivial solution of Eq. (1.5) ensures under these 

conditions an asymptotic stability of solution z (t, IL) (but not that of 5 (t)). 

Let us assume that the momentum of perturbing force is nonnegative in the first quarter 

of the period, i.e. 

P(t)=Sp(ws)ds>O for O<t,<-&- (1.7) 

n 

This condition is satisfied if JI(O~) changes its sign twice in a period, since then 

P(Ot)> 0 for O,< t< n/201 (1.8) 

Let z(t) be a solution of Eq. (1.4) with initial conditions 5 (0) = -A > - c (A > O), 

r'(O) T-y 0. By virtue of (1.1) and (1.7), for large values of parameter 

Hence, as o decreases it is possible to find an w(A) such that x(nl(2o)) = 0. The correspond- 

ing solution r(t) is obviously periodic of period T = 2n/o, and 

x (t) = - 5 (ml61 - t), 5 (t) = z (- t), X' (t) > 0 for 0 < t < n/20 (1.9) 

which implies that x(t)is of form (1.1) and monotonically varies between the extremal values 

-Aand A. 
Thus, when condition (1.7) is satisfied, there exists a solution of form (1.9) for any 

A ~(0, c). It can be shown that o(A)-+co as A -to. If f(r) is an increasing function, then 

o (A) + w. (A) as A -+ 00, where coo(A) is the amplitude-frequency characteristic of free 

oscillations (skeleton curve). 

Below, we consider besides (1.3) and (1.9) periodic solutions of the type 

.r (t) = - z (n/o - t), x (t) = z (- t), x (t) .> 0 for 0 < t < n/2o (1.10) 

Solution (1.10) is in "the opposite phase" to (1.9) and changes its sign twice in a period, 

but is generally nonmonotonic on IO, dol. If f(z) increases and f(r)> p* = maxp(t) for 

r>r*, such solution certainly exists for any A >A,, where A, is the root of equation 

F(A)-pp,A=O, F(A)=if(z)dz 
0 

Indeed, it is possible to show that when A >A,,the phase trajectory V= Z'= (1 of Eq. 

(1.4) issuing from point r = A at p = p* (and, consequently, for any p(t)<p,)satisfies 

the inequality u(r)< 0 on (0, A). We thus have x'(t)< 0 for any o and s(t)> 0. Hence 
there exists an o(A) such that s(n/(20))= 0. The respective solution is of form (1.10) and 

z(t) monotonically decreases on LO, dol. 

2. We first consider a system with mild nonlinearity, and assume that f(r) is a non- 
decreasing function, i.e. 

fx (4 > 0 (2.1) 

Let A (~)be the amplitude-frequency characteristic of the solution of form (1.9), O* = info(A) 

when A E (0, CU), and A, (co) be a skeleton curve. 

Theorem 1. The system (1.4), (1.7), (2.1) with mild nonlinearity has for any 
01 E ((I),, co) a unique periodic solution of form (1.9). Function A (0) monotonically decreases 
and satisfies the inequality A (o)> A,(w). The corresponding solution s(t, CL) of Eq. (1.1) 
with condition (1.2) and a fairly small p is asymptotically stable. 

Proof. Let us first prove that the trivial solution of Eq. (1.5), where s(t) is of form 
(l-9), is stable. 

In a system with mild nonlinearity fi (5) is a nonincreasing function which for s>O is 
even. Hence it follows from (1.9) that a(t periodic of period fZl = n/o), increases (does 
not decrease) on [O, 01, and satisfies the relation n(t)= a(O- t). 

We multiply (1.4) by y'(t) and integrate from 0 to t. After some simple transformations 
with allowance for (l-5), we obtain 

or 

.x’(s) y’ (s) 1: = 5 p(m) y’ (s)ds - f(X(S))y(S)l; (2.2) 
0 

z’(s)Y. (d1; = 1 J’(s) a (S)Y (s)ds + J’(s)Y(s) 1: -f(s (s)) Y (s) I: (2.3) 
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We denote by YI (t) the solution of (1.5) that satisfies conditions 

Y'r(0) = 1. 
Yl (0) = 0 

On the above assumptions a (t) > 0, f (I (t)) < 0, and P (t) > 0 on [O, I/* 01, and z*";op- 

0 and P(O)= 0; hence YeI cannot vanish at some point t<‘/,0, since then the right-hand 
side of equality (2.3) is positive. Consequently, Y,(t)> 0 and Y;(t)>0 on (0, V,Ol. From 
this, using the identity a(t) = a(0 - t), we find that Y,(t)> 0 on (0, f~]. 

Let us consider the boundary value problem 

Y" + ha @)y = 0, y (to) = y (0 + t”) = 0 (2.4) 

Since function a(t) is e-periodic, the Lebesque measureL(u) of the set of values of t 

at which a(t) > u is independent of t,on [t,, 0 + t,] , and since a(t) increases on [O,l/,e], and 

a(t)= a(0 - t), the minimum of the first eigen-value h,,, of problem (2.4) is reached in con- 

formity with the theorem proved in /7/ at t, = 0. It was shown above that the solution yl(t) 

of Eq. (2.4) is positive on (O,O] for h= 1, hence hmir,> 1. Consequently, the spacing of 

adjacent zeros of any solution of Eq. (1.5) exceeds 1.3. 

In conformity with Adamov's theorem /8,9/ the necessary and sufficient condition of 

stability of the trivial solution of (1.5) is the fulfillment of one of the inequalities 

D,< 0< &+, (2.5) 

where D, and d,, are, respectively, the upper and lower bounds of spacing of some zero of any 

solution of Eq. (1.5) and the n-th next following zero. As shown above in this case d, >Cl 
and dr< 00 by virtue of the positiveness of a(t). Hence the trivial solution of Eq. (1.5) 

is stable and, consequently, the solution ~(t, P) is asymptotically stable when condition (1.2) 

is satisfied and pis small. 

Let us prove that Eq. (1.4) has a unique solution of form (1.9). Let us assume that two 

such solutions, viz. r1 (t) and X2(t) exist for some oE(o,, co), Using the theorem on finite 

increments we find that the remainder A(t) = rz(t)-zs,(t) satisfies the equation 

A" + a (t) A = 0, CL (t) = 1, (X @I), x E (x1. z2) (2.6) 

As previously shown, the spacing of two adjacent zeros of any solution Y(t)of Eq. (1.5) 

exceeds 0 when a (t)= al (t) = f, (x, (t)) and a (tj =- a2 (t) = f, (Z2 (t)) . Since f, (5) is a nonincreasing 

function with respect to ]r I, hence a (t) < d, (t) for 1 x2 (t) 1 > 1 x1 (t) / and a (t) < a, (t) for 
1x2(t) I< IsI 1, and the spacing A (t)of zeros must also exceed 8. But by virtue of (1.9) 

A (l/$3) = A (V&) = 0. This contradiction proves the uniqueness of the solution of form (1.9) 

Let us prove thatA(o)monotonically decreases. Setting in (1.4) ot = T we obtain 

0&r" + f (5) = p (t) (2.7) 

Let s(A, o, r) be a solution of (2.7) for z (A,w,O) = -A,z’(A,o,O)= 0. The condition 
r(A,~,r/~n)= 0 which ensures the perodicity of solution also determines function A (0) in 

implicit form. 
Owing to the differentiability of f(X), solution 5 (A,.w,T) is differentiable with respect 

to parameters A and w, and x.4 = axIdA and x,,,=~x/~w satisfy the equations 

w2rAA"+ c (r) xA = 0, x~ (0) = --I, xAA’ (0) = 0, a (T) = fx (X (A, co, T)) (2.8) 

o?xm,” + a (T) 5” = - 20x” (t), 5, (0) = x; (0) = 0 

When sA('l,n)#O we have the derivative 

(2.9) 

The solution of the second of Eqs. (2.8) may be written as 

where y('r, S) satisfies the first of Eqs. (2.8). !I (SY S) =(I , and Y' (S, s) =- 1 ; ys (T, s) is also 

a solution of (2.8), and y,(s,s) = -1 and Ys' ($3 S) = 0, i.e. Y, 1 (T, 0) 7 5~ (T). 
The above analysis shows that s.,(r)< 0 on LO,'/2 ~1, hence y,(r, s)< 0 when O<s< r< 

'je x and XA ('/$x)< 0. Taking into account that 5' (T) ; 0 on (0, l/,s].s' (0) = 0, we obtain from 

(2.10) and (2.9) that z~(~/~z)< 0 and dAldm< 0. Th us A (0) monotonically decreases on (cd,, co). 

To prove the inequality A (co)> A,(o) we consider the solution ~(4, E, r), which depends 

on parameter e, of the equation 

(I)%" -k f (5) == EP (T), x (A, e, 0) = - A. .rm (A, F, 0) z CJ 

Function .I(&. o) is determined by the condition z (A. t'. '/,n) = (J. Obviously .I,, ((1)) 
A (0, (~1) and A (1. o) = A (co). The derivative J, _= ii.r;& satisfies the equation 
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w”q” + a (T) X8 = p (T), 5, (0) = x,’ (0) -=ll 
Representing its solution in the form 

0 0 

and taking into account (1.7) and the formulas obtained above, we obtain re('/~m)>~* Con- 

sequently, &4/a& = - q (*/,n).z~'('i*n)> 0, i.e. A (E, w) monotonically increases as a increases 
fromOt0 1. All statements of the theorem are thus proved. 

Remark. lo. If condition (1.8) is satisfied, then using (2.2) instead of (2.3) we 
can obtain the inequality d,>o without assuming the monotonicity of i (z). Therefore in this 
case the conclusions about the existence and uniqueness of solutions of form (l.g), as well 
as about those about the properties of A (w)remain valid. The statement on stability of 
Z(I, p) is valid, if dl<*>, i.e. when solutions of 11.5) are oscillatory. 

Curve AB in Fig.1 represents the amplitude-frequency characteristic of theconsidered 
solution in conformity with the proved theorem. 

When o,> wg = p’f, o. the frequency of "small" natural oscillations of the system, the 
following more general theorem applies. 

Theorem 2. System (1.41, (2.1) with mild nonlinear- 
A 

L 9 
ity has a solution of form (1.3), which is T-periodic and 

\ 
\ unique for any w> wg. The respective solution of Eq. 
\ 
\ 

~ 

(1.1) with condition (1.2) and fairly small p is asymptot- 
\ 

J '\ 
ically stable. 

\ B Proof. 
c \ 

Since in a system with mild nonlinearity the 

I natural oscillation period is T,(A):r%n/o,, there exists 

-0% it* T- 
4JZ 

wo w 
in conformity with Opiala's theorem /4/ at least one 
periodic solution for W> % . is the second 

Fig.1 such solution, then from Eq. (2.6:: Z&!Je 0 Q a(t),< f,(O) = 
wd’, we obtain that A (t) = x2 (t) - x1 (t) oscillates and the 

spacing of zeros d,3 sloO> n/w. However the latter is impossible, since A(t) is periodic 
of period 2ml(o. This contradiction proves the uniquenss of xl(t). 

Since J (z) =_ -f (-x), p (of) = P (-mt), and p(ot) = --p (n - ot), functions 
so satisfy Eq. (1.4). 

-x1 (n/o - t) and 
Owing to the uniqueness of solution .~'l(t) this means that z+(t)=- 

%(s/m - t) and x1 (t) = z1 (-t), i.e. x1 (t) is of form (1.3). Hence the respective coefficient 
of (7 (t) in (1.5)is periodic of period @ = n/w < d,. This with allowance for (2.5.) proves 
the last statement of the theorem. 

Remark 2. Solution rc,(t) is also of period 71 T, where n is any integer. Because of 
this, the existence and uniquenss of x1(1) implies that system (1.4), (2.1) with mild nonlinear- 
ity cannot have subharmonic oscillations of period II T < 2n:o,. 

3. Let us pass to the analysis of solutions of form (1.10). 

Theorem 3. System (1.4) with mild nonlinearity has not more than two solutions of 
form (1.10) for any w iZ [o&J, (0,1. When two such solutions exist, then with condition (1.8) 
or conditions (1.7) and (2.1) satisfied, the solution with the larger amplitude is unstable. 

Proof. Let us assume that when w> 043 there exist three solutions, viz. xl(t), z&(t), 
and 53 (t) (53 (0) > *Z (0) > zi 0)) of form (1.10). Functions A1 (t) = zz (t) - x1 (t) and AZ {t) = +(I)--z~ (t) 
satisfyEq.(2.6)with coefficients a, (t)= f, (xl (t)),<w,“,a, (t)= f,(x&)),< 6b2,where XI E(s,, z,), x2 E (z2, ~4. 
Takingintoaccountthato > od3 and 4 (t) == AI t-t), b(t)-=A,(-t), and A, (n/2w) =A,(rc/2~) =O, 
we find that A, > 0, A2 > 0 on IO, n/(21.0)1, since otherwise the spacing of some adjacent zeros 
would be less than x:(o~. Thus z3(t)> X$ (t) > z1 (t) ,>-- 0 on to, nl(2w)l from which a2 (t) < a, (t), 
and a0 (t) = a, (t) only when f (5) = wO%. This is, however, impossible, owing to the uniqueness 
of the solution. Hence the equalities AI(nl(2w)) = 0 and A2(n/(2m)) = 0 are incompatabile, 
and there are not more than two solutions of this type. 

Let us prove the instability of x2(t). Since the respective coefficient az(t) = fX(za(l))< 
a, (t) in (l-5), y, (t) (y% (0) = 1, yl‘ (0) = 0) h as no yros on i--n/(2o), n/(&0)]. Consequently, 

the upper bound of spacing of adjacent zeros u,;- 8. Let us show that the lower boundd,< 6. 
We select on 10, n/(2(0)) point t, such that zp' (tl) = 0, x8' (1)< 0 for t, < i < J-c/(20)) and 

consider the solution y (t) (y (tl) = 0, y' (t,) == 1) of Eq. (1.5) . Since z (n?(do)) = 0, 5' (tl) = 0, 
and 5' (n/(2&)) < 0, hence, setting in (2.2) or (2.3) the lower bound at t, and the upper equal 
- n;(Zof, then, taking into account conditions (1.8) or (1.7) and (2.11, respectively, we 
find that y'(t)has not less than one zero on Lt,, x/ (&)I , since otherwise equalities (2.2) or 
(2.3) would have their two sides of different sign. If Y' (n/(24) < 0, then identity 



456 A. A. Zevin 

a (t) = a (n/w - t) would imply that Y(t) has a zero on [n/(20), n/(0]. If Y' (n/ (am))> 0, then y' (t) 
has not less than two zeros on It,, n/(20)] , with point ts between them, at which Y"(&) =- 0, 
and by virtue of (1.5) Y(t,) = 0 or a(&) == 0. 
x2(t) decreases and 

In the latter case e(t) < 0 on ]tl, t2], because 
fx (G(t)) increases on ]t,. t,l. Consequently, when 

of (1.5) y” (t)), 0 on [t,, &I, and y' (t) 
Y (t) > 0. then by virtue 

cannot have zeros there. This contradiction shows that 

Y 02) = 0 
Hence d,< e<o, which according to criterion (2.5) shows the instability of solution 

52 (t) . The theorem is proved. 

If for 0) < od3 , the inequality 1 z, (t)I> 1 q(t) 1 holds for solutions of form (l.lO), the 
statement about the instability of x2(t) remains valid, since all of the above reasoning appl- 
ies in this case. 

It can be shown that when I> 0 on IO, n@w)l, the amplitude-frequency characteristic 

A (cd) of a solution of the form (1.10) lies to the left of the skeleton curve. When 

p = p1 cos d, A (0) is of the form of curve CDE (Fig.1). Solutions that correspond to the 

DE branch are in conformity with Theorem 3 unstable. 
Note that the stability of branch .4n and instability of 11B for a quasilinear system 

subjected to harmonic effects is well-known(see /1,3/ and other). Theorems l-3 extend these 
conclusions to a wide class of perturbing effects, without imposing constraints on their 

magnitude, and on the degree of a system nonlinearity. 
Let s(t) be a solution of form (1.3). Taking into account that fX (A),< a(t)< WE and 

applying the Joukowski criterion /lo/, we obtain the sufficient conditions for stability of 

the trivial solution of (1.5) 

L.<<,,,< Vi, 
,1$- I )I’ I) =I, 2,3,... (3.1) 

If these inequalities are satisfied for some n, the solution z(t, IL) with condition (1.2) 

satisfied and small p is asymptotically stable. Conditions (3.1) may be used for analyzing 

the stability of low-amplitude oscillations at low frequency (e.g., those corresponding to 

branch CD in Fig.1). 
Since for a (t)# const a, f D, , the amplitude-frequency characteristic A (0)) always 

contains regions where the stability conditions (2.5) are not satisfied. As implied by (3.1), 

they lie to the left of o"!n and contract to them as A -0 (Fig.1). Note that quasilinear 

and quasi-Liapunov systems do not have such instability regions. 

4. We pass to the investigation of systems with strict nonlinearity. First, we consid- 

er solutions of form (1.10). As shown above, they exist under condition (1.7) for any n, 
and lim Q (A) : co as A+ 0 and iinr (1) (,I) = lim (ou (A) = k as A -> m, where k* -: lim [/ (A) A-11 as 

‘4 --fr=c /4/. 

Let Yl (t) (Y, KJ) 0, y,' (0) = I), y, (t) (y,, (0) : 1 and Yz (0) 0) be solutions of Eq. (1.5). 

Asshownin the proof of Theorem 1, Y, (t); 0 on (0, n/o1 independently of the character of 

nonlinearity, hence YZ (t) has not more than one zero on ](J, m/ (?o,)].Consequently, if xn (n.'2) 
- y, (Jd(2ol)) = 0, then in (2.10) Y, ('r, s)< 0 for 0 .c< s <_ T< ZI;Z, and as the result,z,,(n~?)<O. 

The amplitude-frequency characteristic A (co), defined by the equation s (‘4. (0, Ii:! n) =~ (I , 

is therefore represented by a smooth curve free of singular points, and there exists for any 

(0 E (Q*, m) (01* Mom inf co (A)) at least one solution of form (1.10). If k > W* and "*< cu< k 

the number of such solutions exceeds one. 

Theorem 4. For 00 < O)< k system (1.4), (1.7) with strict nonlinearity has two 

solutions: q(t) and z?(t) (A,< AZ) of form (1.9), and for (11; k it has the unique solution 

r1 (t) . Solution .r*(t) is unstable, while solution r(t, II) which corresponds to z,(t) is asympt- 
otically stable if condition (1.2) is satisfied and IL fairly small. 

Proof. Let 5, (t) and zq (t) be solutions of form (1.9) for (1) E (u),. Ii). Since [.,(I) in- 

creases (does not decrease) with /z !, hence for 15~ I> 1x1 ! 

01 (t) < a, (f) -< a2 (t), “, CL) /I (4 (t)), fl2 (t) ~~ I* 6% (Q) (4.1) 

As previously shown, Y, (1) > 0 on (0, 01 for a (1) ~~~ CL, (t) and a (t) ~- up (I), hence in both 

cases D,> 8. This also shows that y%(t), as well as A(t) (by virtue of the first of inequal- 

ities (4.1)) have on LO, 01 not more than one zero. Since A (- O/2) = A (U;2) - 0, y, (t) has 
two zeros on (-e/2, O/2) when a(t) = a,(t) and, consequently, the inequality (l,< 0~ D, holds 

for a (t) = a2 (t) , i.e. solution r*(t) is unstable. 
The left-hand inequality in (4.1) implies that Y?(t) has no zeros on ]- (P2. 0,2] when 

a (t) = a, (t) . Since a,(t) monotonically decreases (does not increase) on [0,8!2] , and a,(t) = 

al(- t), hence, as shown in the proof of Theorem 1, the spacing of adjacent of any solution 

also exceeds 0. Thus d,> 0 when a(t) = a,(t) and, consequently, solution s, (t, 1L) is asympt- 

otically stable when condition (1.2) is satisfied and TV is fairly small. 

Since for any one of the two solutions z1 (t) and S?(I) we have d,) t) and for the other 
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-d,< 0, the number of solutions for 0 E(w,, k) is equal two. 

To prove the theorem when k< 00 and o> k we consider a system with rigid character- 

istic f* (z), such that f* (I)= f(z) for 0 <s< m*, k*z = lim f* (A) A-' = co as A + co. For the 

corresponding solution z1 *(t) the theorem holds for any o. But m1 (t) = zl* (t) when A ( z*, and 

.z* may be chosen arbitrarily large, therefore the theorem is also valid for solution Xl 0). 
The above reasoning evidently holds also in the case of k = o*, i.e. when solution s,(t)does 

not exist. The theorem is proved. 

Thus the amplitude-frequency characteristic A (0) has 

two equivalent branches A,(o) and A,(o) that correspond to 
F , 

A ,/'A 
/ 

/ 

il-:2 

solutions x1 (t) and q (t). As shown in the proof of Theorem 

1, .rl(t) monotonically decreases. If p (ot) > 0 on [O, n/(Zo)l, 
it is possible to prove similarly that A,(o) monotonically 

/' 
increases and satisfies the inequality A,(o))< A,(o), i.e. 

F 
/I fl 

A(W) has the form of curve ABC (Fig.2). For a less strict 

// 

the 
IJ L- 

condition (1.7) branch ABmay, generally, intersect 

/ 
skeleton curve, i.e. the amplitudes of unstable solutions 

may exceed those of natural oscillations. 

3 '9 y <UO (0 The Joukowski criterion /lo/ can be used in the analysis 

of stability of low frequency and amplitude periodic oscil- 

Fig.2 
lations which for p = 0 are of form (1.3). Taking into 

account that fx (A) >, a (t) > q2, we obtain 

The fulfillment of these inequalities for some n ensures the stability of the trivial 

solution of (1.5) and, when condition (1.2) is satisfied and p fairly.small, also, that of 

solution z (t, n). It follows from (4.2) that the instability regions lie to the right of 

c,),in to which they contract as A -0 (Fig.2). Note that such instability regions in a 

system defined by the Duffing equation were investigated in /6/. 

Let us consider solution of form (1.10). It was shown in Sect.1 that for A >A* function 

~(1) and, consequently, the respective coefficient a(l) monotonically decrease on lo, dG’o)l. 
Hence from the theorem in /7/ follows that the maximum of the first eigenvalue h,,, of the 

boundary value problem is reached at t0 = 0. It was established in the proof of Theorem 3 that 

when condition (1.7) is satisfied, solution y, (t) (~~(0) = 0, y; (0) = 1) of Eq. (1.5) has a zero 

on (0, 8). Hence h,,, <1 and, consequently, the upper bound of the spacing of adjacent zeros 
u, < 0. 

Equation (2.2) implies that when p (ot) 3 0, then y; (e/Z) = 0 from which I/~(S) == 0, i.e. for 
natural oscillations we have 1); : 0. As o is increased A (w)--, A,(o) and D,- Uy, which 
shows that from some w the stability condition lJ1<n<d, becomes satisfied. When conditions 
(1.2) and (1.7) are satisfied and 1~ is fairly small, solution z(t, p), which corresponds to 

resonance oscillations of form (1.10) (curve Ep in Fig.2), is thus asymptotically stable. 

Since a(O"CJs(A), the sufficient condition of stability (which ensures the fulfillment of in- 

equality o<dzl iS of form ~&~i,v/r~ (A). 

When I increases with 0 fixed, s(t) and the coefficient a(t) in (1.5) increase, while 

on and I), decrease and, consequently, the conditions of stability (if it exists) and in- 

stability of solution (1.10) will be successively satisfied. Note that in the case of 
Duffing's equation the alternation of stable and unstable solutions, as perturbing force in- 

creases, was theoretically and experimentally studied in /5/. 
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